AVORA and the SAUC-E’12 Challenge

As you may already know, I was involved in the construction of an autonomous underwater vehicle (AUV) for participating at the Students AUV Challenge – Europe, which was held in La Spezia (Italy), at the Centre for Maritime Research & Experimentation, from July 6 to 13. It was a great experience being surrounded by top students from all over Europe and Canada, sharing ideas, conceptions and visions about underwater vehicles and robotics.

The sea basin was divided in two equal arenas, this way at most two teams could be working at the same time. The visibility conditions were quite rough and the water currents at the surface were noticeable. The organization provided us with two different workspaces, one on the outside, beside the competition arena, and the other one inside a warehouse. The combination of heat and humidity made it quite complicated to work, even though we were provided with several fans.

The first 5 days were allocated for practice runs, but the truth is some of the teams used this time to finish the construction of their vehicles, including us. On our first few days we did some recordings with an underwater camera, which we used fine grain our detection algorithms. We also finished the construction and did some preliminary tests in the pools. Unfortunately, when everything was ready, the vehicle suffered some leakage  because of an incorrectly sealed connector, which made us lose more than a day cleaning everything, but at least none of the electronic components were damaged.

After repairing the damage, we repeated the tests and verified that everything was working as expected. During these days, the qualification period started, so we were now running against the clock. When everything was ready again, we proceeded to adjust the navigation algorithms directly in the competition arena, something which took longer than expected because one of the arenas was being used for the qualification rounds. The last day of the qualification rounds, we did some simulations of the qualification mission and finished programming it, but at the end, since we had not done enough tests of the mission, we decided not to put at risk the vehicle and gave up our qualification slot.

We all felt a little bit demoralized because of not being able to qualify, but not everything was lost, we still had our chance on the “Impress the judges” category, and we sure came prepared for this one. A while ago, working on our AUV, a member of the team brought a pair of “virtual reality” glasses that he used on his master thesis project. These glasses had attached an external inertial measurement unit, so that the computer could be aware of the operator’s head motion. Since our vehicle was equipped with a pan-tilt camera system, we developed software that combined the camera and the pan-tilt system with the glasses and the gyroscope, so that the user could look around and see the surroundings of the vehicle.

The judges were quite impressed with our telepresence system and it was kind of fun to see them taking turns to try the glasses. They were also quite interested in some of our innovations, such as our pan-tilt camera system or the use of a bend sensor for water velocity measurement. The award ceremony was kind of a surprise, we won the first prize at the “Impress the judges” category, which was much more than we expected after four months work, competing against teams with years of experience and very mature vehicles. After the award ceremony we had a small good-bye party at Lerici, which was shorter than expected, for some of us at least, because of transportation issues.

During these days I had the opportunity to meet some of the most incredible vehicles I have ever seen, not only because of their design, but because of the fact that they were built by students. The vehicle I liked the most was the Canadian one, from the Team SONIA, with a robust and flexible design and an impressive software. The team was very prepared and it felt like they had every situation under control, which is a demonstration of their years of experience participating at the RoboSub Competition. Suffice it to say they won this year’s SAUC-E and got third place at RoboSub, quite a feat!

I was also impressed by the design of the vehicle SMART-E, from the University of Luebeck, even though I think it might present a painful challenge for autonomous navigation. This vehicle was shaped like a UFO, and was equipped with 3 thrusters each of which had an additional rotational axis so as to achieve vertical motion. The main hull was transparent, so they took advantage of this to build a strobe light, which was a requirement of the competition, using LEDs all around it. This combined with its shape, made it look like a real UFO, or should I say UCO? (Unidentified Cruising Object).

Overall, it was a worthwhile experience, not only competing but also building an autonomous underwater vehicle from scratch, and I surely recommend it to any student. It is an opportunity to gain more knowledge and to test the knowledge you already have, but more importantly to achieve experience in a real life project.

You can read more about our vehicle on our Journal Paper, or visit my youtube channel or the team’s youtube channel, or visit the team’s facebook page.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s